Numerical Questions for Motion

Question 1 A train accelerates from $36 \mathrm{~km} / \mathrm{h}$ to $54 \mathrm{~km} / \mathrm{h}$ in 10 sec .
(i) Acceleration
(ii) The distance travelled by car.

Answer

a) Acceleration is given by

$$
a=\frac{\Delta v}{\Delta t}
$$

So $\mathrm{a}=.2 \mathrm{~m} / \mathrm{s}^{2}$
b) Distance is given by

$$
S=u t+\frac{1}{2} a t^{2}
$$

So $s=125 m$

Question 2 A body whose speed is constant
(a) Must be accelerated
(b) Might be accelerated
(c) Has a constant velocity
(d) Cannot be accelerated.

Answer

Might be accelerated
Question 3 A truck traveling at $54 \mathrm{~km} / \mathrm{h}$ is slow down to $36 \mathrm{~km} / \mathrm{h}$ in 10 sec . Find the retardation of

Answer

Acceleration is given by

$$
a=\frac{\Delta v}{\Delta t}
$$

So $a=-.5 \mathrm{~m} / \mathrm{s}^{2}$

This material is created by http://physicscatalyst.com/ and is for your personal and non-commercial use only.

2
Negative sign implies retardation
Question 4 A particle is moving in a circle of diameter 20 m . What is its distance and as per the table given below

S.No	Rounds	Displacement	Distance
1	1		
2	1.5		
3	2		
4	2.5		

Answer

S.No	Rounds	Displacement	Distance
1	1	0	20π
2	1.5	20 m	30π
3	2	0	40π
4	2.5	20 m	50π

Question 5 A scooter travelling at $10 \mathrm{~m} / \mathrm{s}$ speed up to $20 \mathrm{~m} / \mathrm{s}$ in 4 sec . Find the acceleration of train.
Answer
Acceleration is given by

$$
a=\frac{\Delta v}{\Delta t}
$$

So $\mathrm{a}=1.25 \mathrm{~m} / \mathrm{s}^{2}$
Question 6 A train starts from rest and accelerate uniformly at the rate of $5 \mathrm{~m} / \mathrm{s}^{2}$ for 5 sec .
Calculate the velocity of train in 5 sec .

Answer

$25 \mathrm{~m} / \mathrm{s}$

This material is created by http://physicscatalyst.com/ and is for your personal and non-commercial use only.

Question 7 A object moves with uniform positive acceleration. Its velocity-time graph will be
(a) A straight line parallel to the time axis
(b) A straight line inclined at an obtuse angle to the time axis
(c) A straight line inclined at an acute angle to the time axis
(d) None of these.

Solutions (c)

Question 8 The maximum speed of a train is $90 \mathrm{~km} / \mathrm{h}$. It takes 10 hours to cover a distance of 500 km . Find the ratio of its average speed to maximum speed?

Solution

Average speed=500/10=50 km/hr
Ratio of average speed to maximum speed $=50: 90=5: 9$
Question 9 A car start from rest and acquire a velocity of $54 \mathrm{~km} / \mathrm{h}$ in 2 sec . Find (i) the acceleration (ii) distance travelled by car assume motion of car is uniform?

Solution

a) Acceleration is given by

$$
a=\frac{\Delta v}{\Delta t}
$$

So $a=7.5 \mathrm{~m} / \mathrm{s}^{2}$
b) Distance is given by

$$
S=u t+\frac{1}{2} a t^{2}
$$

Question 10 An object dropped from a cliff falls with a constant acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$. Find its speed 5 s after it was dropped.

Solution:

$\mathrm{V}=\mathrm{u}+\mathrm{at}$
$u=>0$
$\mathrm{v}=10 \times 5=50 \mathrm{~m} / \mathrm{s}$
Question 11 A ball is thrown upwards and it goes to the height 100 m and comes down
This material is created by http://physicscatalyst.com/ and is for your personal and non-commercial use only.

1) What is the net displacement?
2) What is the net distance?

Solution:

As it comes down to the initial point

Net displacement is zero

Net distance $=200 \mathrm{~m}$

Practice Questions

Question 12 two cars A and B race each other. The Car A ran for 2 min at a speed of $7.5 \mathrm{~km} / \mathrm{h}$, slept for 56 min and again ran for 2 min at a speed of $7.5 \mathrm{~km} / \mathrm{h}$. find the average speed of the car A in the race.

Question 13 Anand leaves his house at 8.30 a.m. for his school. The school is 2 km away and classes start at 9.00 a.m. If he walks at a speed of $3 \mathrm{~km} / \mathrm{h}$ for the first kilometer, at what speed should he walk the second kilometer to reach just in time?

Question 14 An object moves along a straight line with an acceleration of $2 \mathrm{~m} / \mathrm{s} 2$. If its initial speed is 10 m / s, what will be its speed 2 s later?

Question 15 A bullet hits a Sand box with a velocity of $20 \mathrm{~m} / \mathrm{s}$ and penetrates it up to a distance of 6 cm . Find the deceleration of the bullet in the sand box.

Question 16 A particle experiences constant acceleration for 20 seconds after starting from rest. If it travels a distance D_{1} in the first 10 seconds and distance D_{2} in the next 10 seconds then,
(a) $D_{2}=D_{1}$
(b) $D_{2}=2 D_{1}$
(c) $D_{2}=3 D_{1}$
(d) $D_{2}=4 D_{1}$

This material is created by http://physicscatalyst.com/ and is for your personal and non-commercial use only.

